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Abstract 

There are many illegal land developments at the urban fringe in developing 

countries that are experiencing a process of rapid urbanization. Monthly 

monitoring of land cover change from barren land to built-up areas is im-

portant for local governments to detect and prevent illegal land develop-

ments at the early stage. Polarimetric synthetic aperture radar (PolSAR), 

which is not affected by clouds and outperform single-polarization SAR in 

land cover classification, is therefore a promising tool for the monitoring 

of monthly land cover changes. However, seasonal growth of agricultural 

and natural vegetation may obscure changes from barren land to built-up 

areas because some vegetation are easily confused with buildings in 

PolSAR images due to the similar scattering mechanism. The objective of 

this study is to explore a new method for discriminating monthly changes 

to built-up areas from changes caused by seasonal vegetation growth. 

Three sequential repeat-pass RADARSAT-2 PolSAR images with a repeat 

cycle of 24 days were used in this study. Change detection between the 

first and second images was made to detect monthly land cover changes, 

and then the interferometric coherence between the second and third imag-

es was extracted to improve the change detection result of the first and se-

cond images by reducing the confusion between changes to built-up areas 

and changes caused by seasonal vegetation growth. Within the time inter-

val between the second and third images, change areas caused by seasonal 
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vegetation growth significantly lost coherence as a result of vegetation 

growth, while the coherence of built-up areas remains high. Improved with 

the interferometric coherence, the detection accuracy for changes from bar-

ren land to built-up areas increased from 78.61% to 85.03%, while the 

false alarm rate reduced from 0.25% to 0%. The results showed that 

interferometric coherence is effective in distinguishing monthly changes 

from barren land to built-up areas and changes caused by seasonal vegeta-

tion growth. 

1. Introduction 

There are many illegal land developments at the urban fringe in developing 

countries that are experiencing a process of rapid urbanization. Some ille-

gal land developments have caused irreversible environmental problems 

such as forest degradation, soil erosion, and disappearance of species di-

versity (Yeh and Li, 1996). Most illegal land developments are related to 

land cover change from barren land to built-up areas. Monthly monitoring 

of this type of change is important for local governments to detect and pre-

vent illegal land developments at the early stage. Remote sensing data ob-

tained from different optical sensors have been commonly used to charac-

terize and quantify land cover information. However, conventional optical 

remote sensing is limited by weather conditions, and thus has difficulties 

in collecting timely land cover information in regions frequently covered 

by clouds. Radar remote sensing, which is not affected by clouds, is there-

fore promising for monthly monitoring of land cover changes in those re-

gions.  

Early studies on land cover investigation with radar remote sensing were 

mainly performed using airborne radar imagery, such as SIR-C/X-SAR 

(Saatchi et al., 1997). Despite the promising results of these studies, regu-

lar land cover investigation using airborne radar imagery was impractical 

because airborne radar imagery systems were only occasionally launched 

for collecting experimental data. The use of radar remote sensing in regu-

lar land cover investigation has become practical since some operational 

orbital synthetic aperture radar (SAR) systems, such as RADARSAT-1, 

ERS-1 and ERS-2, and JERS-1, were made available for collecting data 

regularly. However, most orbital SAR systems are single-frequency types. 

Though useful, when taken alone, each of these orbital SARs may create 

confusion during mapping and separation of land cover classes. This con-

fusion can mainly stem from limited spectral information obtained by sin-

gle-frequency SAR systems (Ulaby et al., 1986). In order to overcome the 
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difficulty of single-frequency SAR data, some studies used PolSAR imag-

es to investigate land cover information (Pierce et al., 1994). The results 

indicate that PolSAR images produce better classification results than sin-

gle-polarization SAR images.  

Numerous methods for change detection that use remote sensing data 

have been developed in past studies. Reviews of existing change detection 

methods can be found in many papers (Lu et al., 2004). Image differencing 

and post-classification comparison (PCC) are the most widely used change 

detection approaches. The image differencing is relatively simple, straight-

forward, and easy to implement and interpret. However, this approach 

cannot provide information on the types of change. PCC can provide in-

formation on both change areas and the types of change these areas under-

go. However, the accuracy of PCC is limited by the accuracy of the inde-

pendent classification. In addition, most change detection methods are 

performed on the pixel level. When applied to PolSAR images, pixel-

based methods have two disadvantages. First, they are prone to be affected 

by the speckle in PolSAR images and produce errors (Qi et al., 2012). Se-

cond, they are difficult to use to extract and utilize spatial and textural in-

formation, which is helpful in improving classification accuracy of remote 

sensing data (Gao et al., 2006). 

A new hybrid method that integrates change vector analysis (CVA), 

PCC, and object-oriented image analysis has been recently developed for 

land cover change detection using RADARSAT-2 PolSAR images (Qi and 

Yeh, 2012). CVA was applied to identify change areas, and then PCC was 

used to determine the type of changes. The hybrid method can reduce the 

impact of each individual classification on the change detection result and 

then provide information on types of change. Furthermore, it can reduce 

the speckle effect and utilize textural and spatial information by perform-

ing change detection on the object level. Although this method is effective 

in detecting land cover changes, seasonal growth of agricultural and natu-

ral vegetation may still pose difficulties for monthly monitoring of land 

cover changes. Some vegetation is easily confused with buildings in 

PolSAR images because of the similar scattering mechanism, and it may 

be difficult to discriminate land cover changes to built-up areas from 

changes caused by seasonal vegetation growth. 

The objective of this study is to explore a new method to discriminate 

monthly changes to built-up areas from changes caused by seasonal vege-

tation growth using RADARSAT-2 PolSAR images. Three sequential re-

peat-pass images with a repeat cycle of 24 days were used in this study. 

Change detection between the first and second images was made to detect 

monthly land cover changes, and then the interferometric coherence be-

tween the second and third images was extracted to improve the change 
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detection result of the first and second images by reducing the confusion 

between changes to built-up areas and changes caused by seasonal vegeta-

tion growth. Croplands and natural vegetation are significantly influenced 

by temporal decorrelation and lose coherence within a few days or weeks 

as a result of growth, movement of scatterers, and changing moisture con-

ditions. In contrast, within built-up areas, coherence remains high even be-

tween image pairs separated by a long time interval. 

2. Study area and data 

The study area is located in Panyu District of Guangzhou City in Southern 

China. Panyu has a total land area of 1,314 km
2
 as well as a population of 

926,542. This district was an agricultural area before the economic reform 

in 1978, but has been transformed recently into a rapidly urbanized area. 

Since Panyu became a district of Guangzhou in July 2000, intensive land 

development has been implemented to provide housing to the residents of 

Guangzhou City. Huge profits have been generated through property de-

velopment, which resulted in the increase in land speculation activities and 

illegal land developments.  

 

 

Fig. 1. RADARSAT-2 PolSAR images used for monitoring monthly land cover 

changes from barren land to built-up areas (Pauli RGB composition) 

Three sequential repeat-pass RADARSAT-2 PolSAR images with fine 

quad-pol (FQ12) and Single Look Complex (SCL) acquired on April 14, 

2009, May 08, 2009, and June 01, 2009 were used in this study (Figure 1). 

The images have a full polarization of HH, HV, VH, and VV, a resolution 

of 5.2 × 7.6m, and an incidence angle of 31.5 degrees. Land cover classes 

in the study area can be summarized into five categories: built-up areas 

(UB), vegetation (V), paddy (P), water (W), and barren land (BL). To 
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evaluate change detection results, samples of different types of land cover 

change and no-change areas were selected through visual interpretation 

and field investigations. Visual interpretation was first conducted to identi-

fy change and no-change areas from the entire coverage of images. After 

that, field investigations were carried out to validate the identified change 

areas. The number of plots of different types of land cover change was 

close to that of actual change. Table 1 shows the number of pixels selected 

for each type of land cover change and no-change.  

Table 1. Number of pixels of each type of change and no-change  

   Pixels 

 Barren land -Built-up areas 1,543 

 Barren land - Vegetation 1,484 

 Barren land - Water 1,331 

 Barren land - Paddy 5,365 

Change Vegetation - Barren land 2,709 

 Vegetation - Water 1,434 

 Water - Barren land 7,748 

 Water - Vegetation 472 

 Water - Paddy 3,890 

 Paddy- Paddy 3,623 

 Total 29,599 

No-change (NC) 
 

373,325 

3. Methodology 

Three sequential repeat-pass RADARSAT-2 PolSAR images were used to 

detect land cover changes from barren land to built-up areas. Change de-

tection between the first and second images was performed to detect 

monthly land cover changes, and then the change detection result was im-

proved by reducing the confusion between changes to built-up areas and 

changes caused by seasonal vegetation growth using the interferometric 

coherence extracted from the second and third images. Figure 2 shows the 

methodology of monthly monitoring land cover changes from barren land 

to built-up areas.  
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Fig. 2. Methodology of monthly monitoring land cover changes from barren land 

to built-up areas 

3.1. Preprocessing of RADARSAT-2 PolSAR images 

Image preprocessing, which is critical to change detection, included radi-

ometric correction, speckle filtering, and image registration. Radiometric 

calibration for the images was performed using PolSARPro_v4.1.5 soft-

ware (López-Martínez, 2005) and applying the sigma look-up table pro-

vided in the product. After radiometric correction, the pixel values of the 

images could be directly related to the radar backscatter of the scene. This 

is necessary for the comparison of PolSAR images acquired from the same 

sensor but at different times. A J.S. Lee Sigma filter with a window size of 

7×7 was applied on the images to reduce speckles. Compared with other 

filters, this one effectively retains subtle details and preserves the shape of 

small land parcels while reducing the speckle effect (Lee et al., 2009). The 

advantage of this filter will benefit the accurate delineation of tiny land 

parcels in object-oriented image analysis. Image registration was based on 

the geometric rectification of the RADARSAT-2 images. The PCI 

Geomatica software was used to implement the geometric rectification of 

the images. The RADARSAT-2 image package provides a total of 180 tie 
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points evenly distributed across the entire image. These tie points tie the 

line/pixel positions in image coordinates to geographical latitude/longitude 

and can be used as ground control points (GCP) to register an image to a 

geocoded target image. This work first created a master geocoded image 

with the same resolution as the RADARSAT-2 images and then registered 

the RADARSAT-2 images to this geocoded master image using PCI 

Geomatica based on the tie points. Visual inspection indicates that the 

RADARSAT-2 images were registered perfectly.  

3.2. Detection of monthly land cover changes between the first 
and second images 

The method that integrates CVA, PCC, and object-oriented image analysis 

(Qi and Yeh, 2012) was used to detect land cover changes from the first 

and second images. Object-oriented image analysis can be used to reduce 

the speckle effect and extract textural and spatial information to support 

PolSAR image classification. In object-oriented image analysis, image ob-

jects (groups of pixels) are first delineated by using image segmentation 

techniques, and then change detection and classification are implemented 

on the object level. The object-oriented package Definiens Developer 7.0 

was used to implement the object-oriented image analysis of 

RADARSAT-2 images. The multi-resolution segmentation module pro-

vided by Definiens Developer 7.0 was used to perform image segmenta-

tion based on shape and color homogeneity. For change detection, the hi-

erarchical image segmentation procedure was used to minimize the 

inconsistency in delineating objects from two successive images (Qi and 

Yeh, 2012). In considering two co-registered images, image (t1) and image 

(t2), acquired over the same area at different times t1 and t2, the procedure 

of hierarchical segmentation can be summarized as follows: (1) the initial 

segmentation is applied to image (t1) with a fixed scale parameter; and (2) 

the same segmentation process is implemented again on image (t2) while 

the segmentation result of image (t1) is taken as the thematic layer for con-

straint. This procedure causes all object-merging to take place within the 

boundaries of the segmentation of image (t1). As shown in Figure 3, new 

objects are only created in places where the two images are significantly 

different (e.g., the red polygon in Figure 3). The hierarchical segmentation 

technique could eliminate inconsistencies in delineating image objects 

from two successive images. 
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Fig. 3. Hierarchical segmentation for delineating image objects from two succes-

sive RADARSAT-2 PolSAR images 

After the delineation of image objects, CVA and PCC were used to de-

tect land cover changes on the object level. CVA is a widely used unsu-

pervised change detection method that uses multichannel images (Malila, 

1980). CVA can process any number of image channels and can produce 

detailed change detection information based on the channel change vector 

obtained by subtracting corresponding image channels of two images ac-

quired at different times. In this study, CVA was used to detect change ob-

jects based on selected features instead of pixel values of image channels, 

and feature change vectors (FCVs) were obtained by subtracting corre-

sponding feature vectors of an image object in two images acquired at dif-

ferent dates. The change magnitude was also computed from FCVs. The 

higher the change magnitude is, the more likely that changes take place. A 

widely accepted assumption is that the statistical distribution of the pixels 

of change and no-change areas in the change magnitude can be approxi-

mated as a mixture of Gaussian distributions (Bovolo and Bruzzone, 

2007). Therefore, the expectation-maximization (EM) algorithm was ap-

plied on the change magnitude to identify change objects. EM is frequently 

used for data clustering in machine learning and computer vision because 

it finds clusters by determining a mixture of Gaussians that fit a given data 

set (Moon, 1996). The Weka 3.6 software (Witten et al., 2011) was used to 

implement EM algorithms to determine the threshold to identify change 

objects. Figure 4 shows the change magnitude and the change areas detect-

ed from the first and second images. 
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Fig. 4. (a) Image acquired on April 14, 2009, (b) image acquired on May 08, 

2009, (c) change magnitude calculated using CVA, (d) change areas detected us-

ing EM from the change magnitude 
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 After change areas were detected using CVA, PCC was performed on 

the change areas to determine the type of changes. Many classification 

methods for PolSAR data have been explored. However, so far most of the 

classification methods are pixel-based. These methods are prone to be af-

fected by speckles in PolSAR images and are hard to utilize textural and 

spatial information. Moreover, they cannot take fully use of polarimetric 

information of PolSAR data for land cover classification. Qi et al. (2012) 

proposed a new classification method, which integrates polarimetric de-

composition, PolSAR interferometry, object-oriented image analysis, and 

decision tree algorithms, for the classification of PolSAR images. The re-

sults show that the proposed method can achieve much higher accuracy 

than conventional pixel-based classification methods. This study used this 

method to implement the classification of RADARSAT-2 PolSAR images. 

Considering change detection, PolSAR intererometry was not used in the 

classification. After the independent classification of images, PCC was 

performed on the change areas to determine the type of changes. Land 

cover changes detected from the first and second images are shown in Fig-

ure 5. 

 

 

Fig. 5. Land cover changes detected from the first and second images 

3.3. Interferometric coherence between the second and third 
images for improving the change detection result 

Seasonal growth of agricultural and natural vegetation may pose difficul-

ties for monitoring land cover changes from barren land to built-up areas. 

Some agricultural and natural vegetation are easily confused with build-
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ings in PolSAR images because of the similar scattering mechanism. 

Therefore, land cover changes caused by seasonal vegetation growth may 

obscure changes to built-up areas. Interferometric information has poten-

tial to reduce the confusion between changes to built-up areas and changes 

caused by season vegetation growth. Within the repeat cycle of 

RADARSAT-2, changes caused by seasonal vegetation growth significant-

ly lost coherency as a result of vegetation growth and changing moisture 

conditions, while the coherency of changes to built-up areas remains high. 

The complex polarimetric interferometric coherence γ as a function of 

the polarization of the two images has been given by (Papathanassiou and 

Cloude, 2001). Papathanassiou and Cloude (2001) calculated three opti-

mum complex polarimetric interferometric coherences—γopt_1, γopt_2, and 

γopt_3—by determining the combination of polarizations that yields the 

highest coherence. Three polarimetric interferometric parameters (γopt_1, 

γopt_2, and γopt_3) were extracted from the second and third images (Figure 

6). As shown in Figure 6, there is a strong contrast between urban and 

nonurban areas. The repeat cycle of RADARSAT-2 is 24 days, which pro-

duces a very strong temporal decorrelation for nonurban areas, such as 

croplands and natural vegetation. Croplands and natural vegetation are 

significantly influenced by temporal decorrelation and lose coherence 

within a few days or weeks as a result of growth, movement of scatterers, 

and changing moisture conditions. In contrast, within built-up areas, co-

herence remains high even between image pairs separated by a long time 

interval. Qi et al., (2012) indicated that γopt_2 is appropriate for distinguish-

ing between urban areas and nonurban areas. Therefore, this study per-

formed unsupervised classification on γopt_2 to discriminate changes to 

built-up areas from seasonal vegetation changes.  

 

Fig. 6. Optimal complex coherences extracted from the second and third images 
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4. Results and discussion 

The confusion matrix of change type determination in land cover change 

detection of the first and second images is shown in Table 2. Detection ac-

curacy, false alarm rate, and overall error rate are commonly used statistics 

for evaluating change detection results. The detection accuracy is the per-

centage of correctly labeled “change” samples. The false-alarm rate is the 

percentage of erroneously labeled “no-change” samples. The overall error 

rate is the percentage of erroneously labeled validation samples. Using the 

confusion matrix in Table 2, we calculated the detection accuracy, false-

alarm rate, and overall error rate for land cover changes from barren land 

to built-up areas (Table 4). As shown in Table 2, many changes from bar-

ren land to paddy or vegetation fields caused by seasonal paddy and vege-

tation growth were mistakenly identified as change from barren land to 

built-up areas.  Paddies in the study area have two growth cycles a year. 

The first growth cycle is usually from early April to late July, and the se-

cond growth cycle is from early August to early October. Paddy fields 

usually turn into barren land during the other time periods. During the 

growth of paddies, the total backscatter from the paddy fields includes the 

return scattered from the paddy crown, those scattered from the water be-

neath, and those from the multiple scattering between paddy crown and 

water surface. Many paddy fields in the study area were barren land on 

April 14, 2009. With the growth of the paddy, double-bounce scattering 

from paddy-water surface increased, and paddy fields were easily confused 

with built-up areas on May 08, 2009 due to the similar scattering mecha-

nism. Therefore, paddy growth caused many false alarms to change from 

barren land to built-up areas. For the same reason, some other vegetation 

also produced false alarms to the detection of changes to built-up areas. 

Interferometric coherence extracted from the second and third images 

was used to distinguish barren land to built-up areas from seasonal paddy 

and vegetation changes. Paddy and vegetation fields are significantly in-

fluenced by temporal decorrelation and lose coherence within a few days 

or weeks as a result of growth, movement of scatterers, and changing 

moisture conditions. In contrast, within built-up areas, coherence remains 

high even between image pairs separated by a long time interval. Thus, 

when considering the urban landscape, baseline decorrelation is the domi-

nant factor, and coherence is reduced to a lesser degree by temporal and 

other factors which are independent of baseline. As shown in Figure 7, 

change areas to built-up areas have high coherence amplitude, while 

changes caused by paddy or vegetation growth have low coherence ampli-

tude. Hence, the coherence image calculated from the second and third im-
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ages can be used to improve the change detection result of the first and se-

cond images by discriminating changes to built-up areas from changes 

caused by paddy or vegetation growth. Table 3 shows the confusion matrix 

of change type determination improved with interferometric coherence. 

Mistakenly labeled changes caused by seasonal vegetation growth, such as 

changes from barren land to vegetation or paddies, could be completed 

eliminated from changes to built-up areas because of their low coherence. 

Furthermore, some changes to built-up areas that were mistakenly identi-

fied as changes to vegetation could be corrected. Consequently, as shown 

in Table 4, the detection accuracy was increased by 6.42%, while the false 

alarm rate and overall error rate reduced by 0.25% and 0.28 respectively.  

 

 

Fig. 7. (a) Change areas caused by paddy growth have low coherence amplitude, 

(b) change areas from barren land to built-up areas have high coherence amplitude 



Table 2. Confusion matrix of change type determination in land cover change detection of the first and second images  

Classified 

data 

Reference data 

NC BL-UB BL-V BL-W BL-P UB-BL UB-V UB-P V-BL V-UB V-W V-P W-BL W-UB W-V W-P P-BL P-UB P-V P-P Total 

BL-UB 51 1,213 199 0 0 0 0 0 0 80 0 0 0 0 0 0 0 0 0 0 1,543 

BL-V 31 389 1,057 0 0 0 4 0 0 0 0 0 0 0 3 0 0 0 0 0 1,484 

BL-W 401 0 0 804 0 0 0 0 111 0 9 0 5 0 0 0 1 0 0 0 1,331 

BL-P 61 450 468 0 4,270 0 9 0 0 4 0 48 0 0 16 0 0 0 25 14 5,365 

V-BL 298 0 0 0 0 12 0 0 2,399 0 0 0 0 0 0 0 0 0 0 0 2,709 

V-W 0 0 0 361 0 0 0 0 0 0 1,073 0 0 0 0 0 0 0 0 0 1,434 

W-BL 456 0 56 0 0 3 0 0 54 0 0 0 7,052 0 92 0 35 0 0 0 7,748 

W-V 0 0 12 0 0 0 0 0 0 0 0 0 0 0 460 0 0 0 0 0 472 

W-P 0 0 133 0 500 0 0 1 0 0 0 0 0 0 803 2,393 0 0 22 38 3,890 

P-P 2 182 26 0 337 0 0 0 0 13 0 142 0 398 0 176 0 1,062 415 870 3,623 

NC 369,667 0 829 1,102 0 0 0 0 767 0 0 0 960 0 0 0 0 0 0 0 373,325 

Total 370,967 2,234 2,780 2,267 5,107 15 13 1 3,331 97 1,082 190 8,017 398 1,374 2,569 36 1,062 462 922 
 

(UB: built-up areas; V: vegetation; P: paddy; W: water; BL: barren land) 



CUPUM 2013 conference papers          15 

 

Table 3. Confusion matrix of change type determination in land cover change detection improved with the third image  

Classified 

data 

Reference data 

NC BL-UB BL-V BL-W BL-P UB-BL UB-V UB-P V-BL V-UB V-W V-P W-BL W-UB W-V W-P P-BL P-UB P-V P-P Total 

BL-UB 51 1,312 100 0 0 0 0 0 0 80 0 0 0 0 0 0 0 0 0 0 1,543 

BL-V 31 389 1,057 0 0 0 4 0 0 0 0 0 0 0 3 0 0 0 0 0 1,484 

BL-W 401 0 0 804 0 0 0 0 111 0 9 0 5 0 0 0 1 0 0 0 1,331 

BL-P 61 450 468 0 4,270 0 9 0 0 4 0 48 0 0 16 0 0 0 25 14 5,365 

V-BL 298 0 0 0 0 12 0 0 2,399 0 0 0 0 0 0 0 0 0 0 0 2,709 

V-W 0 0 0 361 0 0 0 0 0 0 1,073 0 0 0 0 0 0 0 0 0 1,434 

W-BL 456 0 56 0 0 3 0 0 54 0 0 0 7,052 0 92 0 35 0 0 0 7,748 

W-V 0 0 12 0 0 0 0 0 0 0 0 0 0 0 460 0 0 0 0 0 472 

W-P 0 0 133 0 500 0 0 1 0 0 0 0 0 0 803 2,393 0 0 22 38 3,890 

P-P 2 182 26 0 337 0 0 0 0 13 0 142 0 398 0 176 0 1,062 415 870 3,623 

NC 369,667 0 829 1,102 0 0 0 0 767 0 0 0 960 0 0 0 0 0 0 0 373,325 

Total 370,967 2,234 2,780 2,267 5,107 15 13 1 3,331 97 1,082 190 8,017 398 1,374 2,569 36 1,062 462 922 
 

(UB: built-up areas; V: vegetation; P: paddy; W: water; BL: barren land) 

Table 4. Accuracy for detecting changes from barren land to built-up areas 

 

Detection using the first and second images Detection improved using the third image 

Detection accuracy (%) 78.61 85.03 

False-alarm rate (%) 0.25 0 
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Overall error rate (%) 0.34 0.06 



5. Conclusions 

This study developed a new method for monthly monitoring of land cover 

changes from barren land to built-up areas using RADARSAT-2 PolSAR 

images. The new method could significantly reduce the effect of seasonal 

vegetation growth on the detection of changes from barren land to built-up 

areas. Three sequential repeat-pass RADARSAT-2 PolSAR images were 

used in the new method. Change detection between the first and second 

images was made to detect monthly land cover changes, and then the 

change detection result was improved by reducing the confusion between 

changes to built-up areas and changes caused by seasonal vegetation 

growth using the interferometric coherence extracted from the second and 

third images. In change detection of the first and second images, seasonal 

paddy or vegetation growth produced many false alarms to changes from 

barren land to built-up areas because paddies and some natural vegetation 

were easily confused with buildings due to the similar scattering mecha-

nism. The interferometric coherence extracted from the second and third 

images was used to improve the change detection result of the first and se-

cond images by reducing the false alarms caused by seasonal paddy and 

vegetation growth. Within the repeat cycle of RADARSAT-2, paddies and 

vegetation significantly lost coherency as a result of growth and changing 

moisture conditions, while the coherency of built-up areas remained high. 

Using the interferometric coherence, the detection accuracy for changes 

from barren land to built-up areas increased from 78.61% to 85.03%, while 

the false alarm rate reduced from 0.25% to 0%. The results showed that 

interferometric coherence significantly reduced the effect of seasonal 

vegetation growth and RADARSAT-2 PolSAR images were effective in 

monitoring monthly land cover changes from barren land to built-up areas. 

References 

Bovolo, F., and Bruzzone, L. (2007). A theoretical framework for unsupervised 

change detection based on change vector analysis in the polar domain. IEEE 

Transactions on Geoscience and Remote Sensing, 45, 218-236. 

Gao, Y., Mas, J.F., Maathuis, B.H.P., Zhang, X.M., and Van Dijk, P.M. (2006). 

Comparison of pixel-based and object-oriented image classification approach-

es - a case study in a coal fire area, Wuda, Inner Mongolia, China. Interna-

tional Journal of Remote Sensing, 27, 4039-4055. 



18          CUPUM 2013 conference papers 

 

Lee, J.S., Wen, J.H., Ainsworth, T.L., Chen, K.S., and Chen, A.J. (2009). Im-

proved sigma filter for speckle filtering of SAR imagery. IEEE Transactions 

on Geoscience and Remote Sensing, 47, 202-213. 

López-Martínez, C., Ferro-Famil, L. and Pottier, E. (2005). PolSARpro v4.0 

Polarimetry Tutorial, URL: http://earth.esa.int/polsarpro/tutorial.html, Euro-

pean Space Agency, Paris, France. 

Lu, D., Mausel, P., Brondizio, E., and Moran, E. (2004). Change detection tech-

niques. International Journal of Remote Sensing, 25, 2365-2407. 

Malila, W. A. (1980). Change vector analysis: an approach for detecting forest 

changes with Landsat. Proceeding of Remotely Sensed Data symposium (pp. 

326–336), W. Lafayette. 

Moon, T.K. (1996). The expectation-maximization algorithm. IEEE Signal Pro-

cessing Magazine, 13(6), 47-60. 

Papathanassiou, K. P. and Cloude, S. R. (2001) Single-baseline polarimetric SAR 

interferometry, IEEE Transactions on Geoscience and Remote Sensing, Vol. 

39, No. 11, 2352-2363. 

Pierce, L. E., Ulaby, F. T., Sarabandi, K. and Dobson, M. C. (1994) Knowledge-

Based Classification of Polarimetric Sar Images, IEEE Transactions on Geo-

science and Remote Sensing, Vol. 32, No. 5, 1081-1086. 

Qi, Z., Yeh, A.G.-O., Li, X., and Lin, Z. (2012). A novel algorithm for land use 

and land cover classification using RADARSAT-2 polarimetric SAR data. 

Remote Sensing of Environment, 118, 21-39. 

Qi, Z. and Yeh, A.G.O. (2012). Integrating change vector analysis, post-

classification comparison, and object-oriented image analysis for land use and 

land cover change detection using RADARSAT-2 polarimetric SAR images. 

In S. Timpf, and P. Laube (Eds.), Advances in Spatial Data Handling (107-

123). Berlin: Springer. 

Saatchi, S.S., Soares, J.V., and Alves, D.S. (1997). Mapping deforestation and 

land use in Amazon rainforest by using SIR-C imagery. Remote Sensing of 

Environment, 59, 191-202. 

Ulaby, F. T., Kouyate, F., Brisco, B. and Williams, T. H. L. (1986) Textural In-

formation in Sar Images, IEEE Transactions on Geoscience and Remote Sens-

ing, Vol. 24, No. 2, 235-245.  

Yeh, A.G.O. and Li, X. (1996). Urban growth management in the Pearl River Del-

ta - an integrated remote sensing and GIS approach. ITC Journal, Vol. 1, 77-

86. 

 


